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The Problem

The output of a closed economy consists of a quantity of a single good, any part of which is immediately
either consumed or added to the stock of produced capital. Once added to the stock of produced capital
it cannot subsequently be consumed. The production function is:

Y (t) = A(K(t))α(R(t))β (A,α, β > 0; α + β < 1)

where:

Y (t) = output at time t;

K(t) = stock of produced capital at time t;

R(t) = rate of use of a non-renewable resource at time t;

A,α, β are fixed parameters, the value of A reflecting the technology and the labour input, both of which
are assumed constant.

The stock of produced capital is subject to depreciation at a rate δK(t) (0 < δ < 1).

Given positive initial stocks K0 of produced capital and S0 of the resource, what is the maximum time
over which consumption can be maintained at a constant given rate C, and what time path of R is
needed to achieve that maximum time?

Formulation as an Optimal Control Problem

Let T be the duration of consumption at rate C, We have to maximise T but, to fit the standard format
of an optimal control problem it is convenient to write this as an integral:

max
∫ T
o
1 dt

There are two state variables, the stock of produced capital K and the stock of the resource S (I will
sometimes omit the time variable where it is clear from the context). The control variable is R. The
equations of motion are:

K̇ = AKαRβ − C − δK
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Ṡ = −R

There is also an inequality constraint: output must be sufficient to provide for consumption.

C − AKαRβ ≤ 0

While K and R must be positive, separate constraints are not needed since it can be shown that they are
implicit in the other conditions. A further constraint is that S must be non-negative, but since S must
gradually decrease from its initial value, the constraint will only become binding at t = T and can be
handled by setting S(T ) = 0 as a terminal condition, so that the full set of conditions for a state-space
constraint are not needed. Terminal capital, K(T ), is free.

The given initial conditions are K = K0 and S = S0.

Necessary Conditions for a Solution

Introducing the co-state variables λ for K and µ for S, the Hamiltonian is:

H = 1 + λ(AKαRβ − C − δK) + µ(−R)

Given the inequality constraint, and since a constraint qualification (Chiang p 278) is satisfied by the
fact that (with 0 < β < 1) AKαRβ is convex in R and therefore C −AKαRβ is concave in R, we need
to expand this to a Lagrangian including an additional co-state variable ν:

L = 1 + λ(AKαRβ − C − δK) + µ(−R) + ν(AKαRβ − C)

The necessary conditions are:

∂L

∂R
= (λ+ ν)AKαβRβ−1 − µ = 0 (1)

λ̇ = − ∂L

∂K
= −(λ+ ν)AαKα−1Rβ + λδ (2)

µ̇ =
∂L

∂S
= 0 (3)

K̇ =
∂L

∂λ
= AKαRβ − C − δK (4)

Ṡ =
∂L

∂µ
= −R (5)

and the complementary slackness conditions (Chiang p 279) arising from the inequality constraint:

ν ≥ 0 (6) ν(AKαRβ − C) = 0 (7)

The terminal conditions are:

λ(T ) = 0 (8) S(T ) = 0 (9)

Inferences from the Necessary Conditions: Case ν > 0

From (7) we can infer:
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AKαRβ − C = 0 (10)

Given (10), the equation of motion (4) reduces to:

K̇ = −δK (11)

This is readily solved (eg via the standard substitution K = emt), and writing n for the time at the start
of an interval over which ν > 0 the time path of K over that interval is:

K = K(n)e−δ(t−n) (12)

Rearranging (10) and using (12) to substitute for K we can also obtain the time path of R over the
same interval:

R = C1/βA−1/βK−α/β = C1/βA−1/β(K(n))−α/βeαδ(t−n)/β (13)

Suppose now that the interval over which ν = 0 continues until t = T , that is, until the stock of resource
at time n, S(n), has been exhausted. To find the length of the interval [n, T ], we set that stock equal
to the integral of R over that interval:

S(n) =
∫ T
n
Rdt =

∫ T
n
C1/βA−1/β(K(n))−α/βeαδ(t−n)/β dt (14)

Evaluating the integral after taking the constant terms outside:

S(n) = C1/βA−1/β(K(n))−α/β
∫ T
n
eαδ(t−n)/β dt (15)

S(n) = C1/βA−1/β(K(n))−α/β
[
β

αδ
eαδ(t−n)/β

]T
n

(16)

S(n) =
βC1/βA−1/β(K(n))−α/β

αδ
(eαδ(T−n)/β − 1) (17)

αδS(n)A1/β(K(n))α/β

βC1/β
+ 1 = eαδ(T−n)/β (18)

Hence the length of time over which the stock of resource at time n will be exhausted is given by:

T − n =
β

αδ
ln
(αδS(n)A1/β(K(n))α/β

βC1/β
+ 1
)

(19)

or equivalently:

T − n =
β

αδ
ln
(αδS(n)A1/β(K(n))α/β + βC1/β

βC1/β

)
(20)

Note that (14) to (20) all depend on the supposition that ν = 0 continues until t = T .

A Lower Bound on the Maximum Duration

Although there is no reason to expect that the equations of motion (12) and (13) will in all circumstances
maximise the duration of consumption at the rate C, they do enable us, since the option of following
those equations is always available, to formulate a lower bound on that maximum duration, in other
words, a minimum time over which consumption at rate C can be maintained. Putting n = 0 in (20)
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and (because the equations do not imply optimality when ν = 0) replacing = by ≥, we have:

Proposition 1a A lower bound on the maximum duration T is given by:

T ≥ β

αδ
ln

(
αδS0A

1/βK
α/β
0 + βC1/β

βC1/β

)

Further Inferences using Economic Reasoning

There seems no obvious way, using just the necessary conditions above, of determining the range of
times over which ν > 0 or, in particular, of justifying the above supposition that, once that condition
holds, it continues to hold until the resource has been exhausted. But further progress can be made
using economic reasoning.

A marginal unit of resource at a time n when ν > 0 could be applied in either of two ways. It could be
added to the stock of resource S(n), leaving more resource available for subsequent use. Alternatively, it
could be added to the resource input at time n, R(n), with the consequence that the rate of output at
that time would slightly exceed C and the resulting capital stock would be marginally more than it would
have been if output had equalled C. Either would extend the interval [n, T ], but not normally by the
same amount. We will find and compare the marginal products of these two uses, where the ”product”
is the length of that interval.

If the marginal unit of the resource is used to add to S(n), differentiating (20) with respect to S, the
marginal product is:

d(T − n)

d(S(n)
=

β

αδ

( βC1/β

αδS(n)A1/β(K(n))α/β + βC1/β

)
αδA1/β(K(n))α/β (21)

which simplifies to:

d(T − n)

dS(n)
=

β2C1/βA1/β(K(n))α/β

αδS(n)A1/β(K(n))α/β + βC1/β
(22)

To find the marginal product of adding to use of the resource, we must first obtain the effect on K(n).
From the production function, the marginal product (in terms of output) of the resource is in general:

dY

dR
= AKαβRβ−1 (23)

At time n, using (10), we have:

R(n) = C1/βA−1/β(K(n))−α/β (24)

Substituting (24) into (23) and noting (from the equation of motion of K) that the marginal effect on
output will affect produced capital on a 1:1 basis:

dK(n)

dR
= A(K(n))αβC(β−1)/βA(1−β)/β(K(n))α(1−β)/β = A1/ββC(β−1)/βK(n))α/β (25)

The required marginal product, differentiating (20) with respect to K and using (25), is then:
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d(T − n)

dR
=
d(T − n)

dK(n)

dK(n)

dR
=

=
β

αδ

( βC1/β

αδS(n)A1/β(K(n))α/β + βC1/β

)
αδS(n)A1/β(α/β))K(n))(α−β)/βA1/ββC(β−1)/βK(n))α/β (26)

d(T − n)

dR
=

αβ2CS(n)A2/β(K(n))(2α−β)/β

αδS(n)A1/β(K(n))α/β + βC1/β
(27)

Comparing the marginal products (22) and (27) and focusing on their numerators since their denominators
are identical, their ratio simplifies to:

d(T − n)/dS(n)

d(T − n)/dR
=

C(1−β)/β

αS(n)A1/β(K(n))(α−β)/β
(28)

We can infer that the marginal product of an addition to the stock of resource is no less than the marginal
product of an addition to the resource input when, and only when the right hand side of (28) is greater
than or equal to 1, or equivalently:

S(n) ≤ C(1−β)/β

αA1/β(K(n))(α−β)/β
(29)

Whenever this condition holds, it is better (in terms of the objective of maximising T) to use only the
minimum quantity of resource required for output to equal C, rather than using some resource to invest
in produced capital. Moreover, if this condition holds at some time,it must hold at any later time since
S(n) always decreases, while with output equalling C, K(n) decreases at the rate of depreciation and
therefore the right hand side of (29) increases.

Writing n∗ for the earliest time at which condition (29) holds, we can see that:

S(n∗) =
C(1−β)/β

αA1/β(K(n∗))(α−β)/β
(30)

Thus n∗ is the time at which the system shifts from ν = 0 to ν > 0, and having done so it never reverts
to ν = 0.

It will be useful below to consider the position just before n∗, at time n∗ − ε where ε is an infinitesimal.
During the interval [n∗− ε, n∗], the changes in the state variables K and S must be infinitesimal. Hence
the equations (21) to (28), on substituting n∗ − ε for n, must be at worst inequalities in which the
difference is no more than an infinitesimal quantity. Of particular interest is the effect on (24), implying
that R(n∗ − ε) differs by no more than an infinitesimal quantity from R(n∗) and therefore Y (n∗ − ε)
differs by no more than an infinitesimal quantity from Y (n∗) = C. For optimality therefore we require:

limε→0 Y (n∗ − ε) = C (31)

More on the Lower Bound

From the above reasoning we can now strengthen Proposition 1 to the following:

Proposition 1b A lower bound on the maximum duration T is given by:
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T ≥ β

αδ
ln

(
αδS0A

1/βK
α/β
0 + βC1/β

βC1/β

)

with strict equality if:

S0 ≤ C(1−β)/β

αA1/βK
(α−β)/β
0

Inferences from the Necessary Conditions: Case ν = 0

Differentiating (1) with respect to time and using (3) to eliminate µ̇:

λ̇AKαβRβ−1+λAKα−1K̇βRβ−1 + λAKαβ(β − 1)Rβ−2Ṙ = 0 (32)

Using (2) to substitute for λ̇:

λ(−AαKα−1Rβ + δ)AKαβRβ−1+λAαKα−1K̇βRβ−1 + λAKαβ(β − 1)Rβ−2Ṙ = 0 (33)

Dividing by λAKαβRβ−1:

−AαKα−1Rβ + δ + αK−1K̇ + (β − 1)R−1Ṙ = 0 (34)

Multiplying (4) by αK−1 and rearranging:

−AαKα−1Rβ + αK−1K̇ = −αK−1C − αδ (35)

Substituting from (35) into (34) and then rearranging:

-αK−1C − αδ + δ + (β − 1)R−1Ṙ = 0 (36)

Ṙ =
R

1− β

(
δ(1− α)− αC

K

)
(37)

From (4) we have:

K̇ = AKαRβ − C − δK (38)

Considering (37) and (38) together, we have simultaneous differential equations which, in conjunction
with the initial conditions, should determine the optimal paths of K and R while ν = 0. However the
equations appear intractable: there is no obvious way to an analytic solution.

Finding Approximate Solutions For Particular Values of the Parameters

A first step towards a method for finding an approximate solution is to write down difference equations
corresponding to (37) and (38), There is more than one way in which this can be done: our approach
has Kt+1 entirely dependent on variables in period t, but Rt+1 dependent on Kt+1 as well as Rt.

Rt+1 = Rt +
Rt

1− β

(
δ(1− α)− αC

Kt+1

)
(39)

Kt+1 = Kt + AKα
t R

β
t − C − δKt (40)
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Corresponding to (5) we can add a difference equation for the stock of resource S:

St+1 = St −Rt (41)

Note that we are now working in discrete time and will take the first period of production to be period
1.

Given the values of α, β, δ, A and C, the initial state values K1 and S1, and a trial initial value R1

of the control variable, equations (39), (40) and (41) will determine time paths of Kt, Rt and St. For
convenience in calculation, this can be set up in a spreadsheet with rows for periods and columns for the
variables.

To develop this into a method for finding a solution, we need a) to identify the corresponding difference
equations for periods when ν > 0 and specify when those equations apply, and b) to identify a criterion
for optimality so that in choosing trial values of R1 we can try values progressively closer to the optimum.

Since equations (40) and (41) are derived directly from the conditions of the problem, they apply at all
times. What changes when ν > 0 is that (39) is replaced by the following which corresponds to part of
(13):

Rt+1 = C1/βA−1/βK
−α/β
t+1 (42)

Using the condition (29), we can combine (39) and (42) as follows:

Rt+1 = Rt +
Rt

1− β

(
δ(1− α)− αC

Kt+1

)
when S(n) >

C(1−β)/β

αA1/β(K(n))(α−β)/β
≡ SC(n)

and = C1/βA−1/βK
−α/β
t+1 otherwise (43)

To set this up in a spreadsheet it is useful to include a column for SC(n).

It remains to identify a criterion for optimality. For this purpose it is useful to include in the spreadsheet
a column for Yt. On entering in the spreadsheet an initial trial value for R1 and calculating through, it
may be found that at some time the stock of resource has not been exhausted but Yt < C. That cannot
be optimal: indeed, it fails to meet the condition that output be sufficient to support consumption at
rate C. In that case we need to increase the trial value of R1.

Alternatively, it may be found that Yt ≥ C is always satisfied and that there is a time τ such that Yt = C
whenever t ≥ τ , but that there is a large difference between Yτ−1 and Yτ . More precisely, it may be
found that Yτ−1 − Yτ is much larger than Yτ−2 − Yτ−1. That cannot be optimal because, as shown by
(31) within a continuous framework, optimality requires that Y approaches C as the time approaches τ .
In that case we need to reduce the trial value of R1.

Depending on the parameters and initial values of the state variables, it may be found that the system
is extremely sensitive to small adjustments in the trial value of R1. In the case considered below it was
necessary to go to 12 significant figures to obtain a satisfactory approximation to optimality.

Characteristics of an Optimal Solution

We have seen that, in the final stage of an optimal solution, the paths of K and R are determined
respectively by (13) and (12), implying that K falls at the rate of depreciation while R rises so as to
maintain output equal to required consumption while K falls. If the initial stocks K(0) and S(0) are
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such that condition (29) holds at n = 0, this ”final” stage will be the whole solution. That will be the
case when S(0) is sufficiently small, although how small is sufficient will depend on K(0), C and the
parameters.

Prior to that final stage, in cases when condition (29) does not hold at n = 0, the paths of K and R are
determined by (38) and (37), which allow those variables either to rise or to fall. When S(0) is sufficiently
large, it is found that the paths of the variables prior to the final stage can be divided into three phases.
Charts 1a and 1b below show the optimal paths of R (obtained via the approximate method above)
given the values A = 1; α = 0.3; β = 0.2; δ = 0.1;C = 2; S0 = 2000, with two different values of K0.
Note that the vertical scale of Chart 1b, though much larger than that of Chart 1b, has been truncated
with the effect that the path of R over the first few periods is not shown (eg R1 ≈ 114).

Both charts show a long central phase in which R remains approximately constant. During this phase,
K and therefore Y also remain approximately constant. Using a term commonly employed in treatments
of optimal growth and other contexts, we may describe this phase as a turnpike. Following the turnpike
in both cases is a phase in which R and K fall, with Y therefore falling until it reaches the point at
which Y = C and the system enters the final stage in which R rises again (appearing as just a small
uptick in the charts).
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In both cases, the approximately constant values during the turnpike phase are the same: about 7.5 for
R and 8.5 for K. But the phase prior to the turnpike differs according to the quantity of initial capital.
If this is large, as in Chart 1a, R is initially small, limiting Y so that depreciation lowers K towards the
turnpike level. If initial capital is small as in Chart 1b, on the other hand, R and Y are initially large,
raising K towards the turnpike level. It is as if there is something about the turnpike which draws the
system towards it.

To see what is special about the values of R and K in the turnpike, we first obtain, from (4), the
condition on R for K to be constant:

K̇ = AKαRβ − C − δK = 0 (44)

AKαRβ = C + δK (45)

R = (C + δK)1/βA−1/βK−α/β (46)

Now we will find the value of K that minimises R, consistently with (46). Why? Because, given a
finite quantity of the resource, the way to maximise the time over which required consumption can be
maintained is to minimise its rate of use. Setting the derivative equal to zero:

dR

dK
= A−1/β

[
(C + δK)1/β(−α/β)K−(α+β)/β + (δ/β)(C + δK)(1−β)/βK−α/β

]
= 0 (47)

Dividing through by A−1/β(C + δK)1/βK−α/β:

(−α/β)K−1 + (δ/β)(C + δK)−1 = 0 (48)

−αC − αδK + δK = 0 (49)

K =
αC

δ(1− α)
(50)

To show that (50) corresponds to a minimum rather than a maximum of R we may note that (45)
implies:

Rβ =
C

A
K−α +

δ

A
K1−α (51)

Given that 0 < α < 1, as K increases the first term on the right of (51) declines exponentially while
the second increases exponentially. Hence the right hand side in total is convex and a point where its
derivative with respect to K is zero must be a minimum.

Substituting the above parameter values into (50) and then substituting into (46) we obtain the following
values to which K and R approximate in the turnpike phase:

K =
0.3(2)

0.1(1− 0.3)
≈ 8.57 (52)

R = (2 + 0.1(8.57))1/0.21−1/0.28.57−0.3/0.2 = 2.8575(8.57−1.5) ≈ 7.59 (53)

More generally, using (50) to substitute for (K) in (46), the approximate value of R in the turnpike phase
is:
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R =
(
C +

αC

1− α

)1/β
A−1/β

( αC

δ(1− α

)−α/β
=
( C

1− α

)1/β
A−1/β

( δ
α

)α/β( C

1− α

)−α/β
= A−1/β

( δ
α

)α/β( C

1− α

)(1−α)/β
(54)

Considering progressively larger quantities of initial capital S0 while holding initial capital and other
parameters constant, the turnpike phase will occupy a larger and larger proportion of the total optimal
path, and the other phases and final stage will become relatively insignificant. Thus the maximum time
T will approximate closer and closer to S0 divided by the right hand side of (54). Hence:

limS0→∞
T

S0

= A1/β
(α
δ

)α/β(1− α

C

)(1−α)/β
(55)

From this we can infer:

Proposition 2 If S0 is large then a reasonable approximation to the maximum duration T is given by:

T = S0A
1/β
(α
δ

)α/β(1− α

C

)(1−α)/β
As an illustration, for our parameters as above the right hand side of (55) evaluates as below (we ignore
the A term since A = 1):( 0.3

0.1

)0.3/0.2(1− 0.3

2

)(1−0.3)/0.2
= 31.50.353.5 ≈ 0.132 (56)

Our estimate from Proposition 1 for T given S0 = 1000 and K0 = 100 is therefore 1000(0.132) = 132,
whereas the actual T , obtained by our approximate method, is 170, a difference of 29%. For S0 = 2000,
again with K0 = 100 (the case shown in Chart 1a), the estimate is 2000(0.132)− 264, while the actual
is 302, a difference of 14%. For S0 = 3000, the estimate is 3000(0.132) = 396 while the actual is 434,
a difference of only 10%, illustrating the convergence of approximation to actual as S0 becomes larger.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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